
Допис від
LazyCat
Я со скептицимом отношусь к этому:
В Европейской организации ядерных исследований (CERN) с 1996 г. реализуется глобальный научный проект - LHC - большой адронный коллайдер.
Торцевой адронный калориметр "НЕ-1"
Большой адронный коллайдер - кольцевой ускоритель заряженных частиц на встречных пучках с кольцом длиной 26,65 км, проходящим под территориями Швейцарии и Франции. Реализация проекта CMS объединит мировой опыт создания и эксплуатации больших экспериментальных установок, накопленный во всем мире на протяжении последних десятилетий. Подобно тому, как открытие атомной структуры, волновых свойств материи и квантовой механики в начале ХХ столетия обеспечило быстрое развитие науки и технологий, результаты экспериментов на LHC не только дадут возможность установить фундаментальные законы физики частиц, но и могут привести к открытиям, которые определят генеральное развитие науки и технологии в XXI веке.
Проект ускорителя задуман как крупномасштабная международная программа. России было предложено участвовать в его создании. Договоренность закреплена в Протоколе об участии в проекте, подписанном 14 июня 1996 г. CERN и Миннауки России по поручению Правительства Российской Федерации. Согласно этому документу российские институты и промышленные предприятия произведут высокотехнологичное оборудование на сумму 200 млн швейцарских франков в течение 10 лет. Финансовый вклад России, определяющий масштаб последующего участия российских физиков в экспериментах на коллайдере, должен составить 133 млн швейцарских франков, а инвестиции CERN и других западных партнеров в Россию - более 66 млн швейцарских франков. Несмотря на то что финансовый вклад России составит менее 5% общей стоимости проекта, реальная доля участия российских физиков в последующих экспериментальных исследованиях на этом уникальном комплексе составит в среднем 16%. Это результат признания значительного интеллектуального и технологического вклада российских ученых в развитие физики высоких энергий вообще и в осуществление проекта LНС, в частности.
Новый ускоритель будет установлен в уже существующем в CERN кольцевом тоннеле, созданном для электронно-позитронного коллайдера LЕР, и станет крупнейшим в мире ускорителем заряженных частиц.
Ввод ускорителя в строй намечен на 2006-2007 гг. На коллайдере будут изучаться столкновения двух пучков протонов с суммарной энергией 14 ТэВ/протон. Эта энергия в миллионы раз больше энергии, выделяемой в единичном акте термоядерного синтеза.
Россия принимает участие как в строительстве ускорителя, создании детекторов, так и в последующих научных исследованиях с их использованием. Координатором проекта от России и стран-участниц RDMS является ОИЯИ (г. Дубна).
На ускорителе LНС планируется проведение экспериментов ATLAS, СМS, ALICE, LНСb, для каждого из которых на кольце ускорителя будет построен свой инструмент - детектор частиц. В центре каждого детектора будут сталкиваться протоны с частотой около 800 млн раз в секунду. Каждое столкновение даст около 10 млн единиц информации. Для обработки этой информации создаются совершенное электронное оборудование и математическое обеспечение, а также разрабатывается новейшая информационная технология GRID.
Детектор СМS (Соmрасt Muon Solenoid)
Детектор СМS - универсальный физический прибор целью которого является регистрация новых частиц высоких энергий. На этом приборе будут проверяться положения "стандартной модели" физики частиц, в частности, механизм Хиггса, согласно которому все частицы приобретают массы при взаимодействии с "хиггсовскими полями", заполняющими все пространство. На детекторе попытаются обнаружить новую частицу (хиггсовский бозон), связанную с этими полями. Будут проверяться следствия теории SUSY - концепции "суперсимметрии" - стоящей за пределами "стандартной модели". Теория SUSY объясняет, почему при разных взаимодействиях могут возникать разные силы, теория также может объяснить наличие "темного" вещества, ответственного за ускорение расширения Вселенной. На детекторе будет проверяться предположение о том, что кварки и лептоны не являются фундаментальными частицами, а также будет производиться поиск новых неизученных явлений. В целом детектор СМS будет иметь 15 млн индивидуальных детекторных каналов, контролируемых мощными компьютерами. Общая масса 12 500 т; высота 15 м; длина 21,6 м, магнитное поле 4 Тл.
В разработке детектора участвуют более 60 научных организаций из 33 стран мира. В июне 1999 г. ассоциированным членом коллаборации СМS стал ГУП ЦВТТ НИКИЭТ. Но еще с 1997 г. ГУП ЦВТТ НИКИЭТ принимает участие в разработке механических конструкций торцевых адронных калориметров совместно с Лабораторией физики высоких энергий ОИЯИ (г. Дубна) и Институтом физики высоких энергий (г. Протвино).
Сложность задачи, поставленной перед ГУП ЦВТТ НИКИЭТ, заключалась в том, что система крепления торцевых адронных калориметров должна обеспечивать точность изготовления и монтажа конструкции весом -300 т на уровне десятых долей миллиметра с учетом деформаций и перемещений под действием как веса, так и больших сил, создаваемых магнитным полем напряженностью 4 Тл. При этом должно быть гарантировано точное позиционирование передней мюонной станции, измеряющей траектории мюонов с точностью до десятка микрон.
В сентябре 1999 г. между Минатомом России, ОИЯИ и Государственным комитетом по науке и технологиям Республики Беларусь был подписан документ "Соглашение по организации технического сопровождения изготовления механических конструкций торцевых адронных калориметров, контролю качества и приемке готовой продукции", в соответствии с которым на ГУП ЦВТТ НИКИЭТ возложена ответственность:
* за подготовку полного комплекта рабочей конструкторской документации механической части торцевых адронных калориметров, включая монтажное оборудование;
* проведение прочностных расчетов силовых конструкций торцевых адронных калориметров;
* входной контроль материалов, из которых изготавливаются детали механических конструкций в соответствии с техническими требованиями;
* поставку материалов на ГП "МЗОР" (Республика Беларусь) по согласованному перечню в пределах средств, выделяемых Минатомом России и Минпромнауки России в соответствии с графиком;
* приемку готовой продукции.
ГУП ЦВТТ НИКИЭТ поручено разработать технологию монтажа торцевых адронных калориметров в CERN и нестандартное монтажное оборудование. Проделанная работа получила положительное заключение службы технической безопасности CERN.
По итогам выполнения названного выше комплекса работ получен дополнительный заказ CERN на разработку технологии и производство заготовок (плиты и прутки) с повышенными прочностными характеристиками из кремнистой латуни ЛК75-0,5, который выполнен в 2000 г. ГУП ЦВТТ НИКИЭТ, ИЦ ИЦП МАЭ и ОАО "Красный Выборжец" совместно разработали технические условия на производство горячекатаных латунных плит и холоднодеформируемых прутков. Совместно с ОАО "Ижорские заводы" внесены изменения в технические условия на изготовление стальных плит толщиной 134-138 мм из стали 03Х20Н16АГ6. Контроль качества промышленных партий металлопродукции проведен испытательным центром ИЦП МАЭ. Выполнено около 1400 испытаний по определению химического состава и механических свойств при различных нагрузках. Многие результаты испытаний контролировались CERN.
В 2000 г. на ГУП ЦВТТ НИКИЭТ была возложена ответственность за монтаж торцевых адронных калориметров и интерфейсной системы на детекторе CMS. В ноябре 2002 г. успешно осуществлен монтаж первого торцевого адронного калориметра с интерфейсной системой.
С 2000 г. ГУП ЦВТТ НИКИЭТ совместно с Лабораторией физики высоких энергий ОИЯИ участвует в создании передней мюонной станции и оборудования для ее монтажа на детекторе. ГУП ЦВТТ НИКИЭТ уже проведены испытания теплотехнической надежности электроники передней мюонной станции.
Помогите.
Bookmarks